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Chaotic scattering in deformed optical microlasing cavities
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We consider a common class of dielectric optical microlasing cavities with quadrupolar deformations and
address the question of the maximally allowed amount of deformation for both high-Q operation and a high
degree of directionality of light emission. Our approach is to compute the probability for light rays to be
trapped in the cavity by examining chaotic scattering dynamics in the classical phase space. We develop a
dynamical criterion for high-Q operation and introduce a measure to quantify the directionality of the light
emission. Our results suggest that high-Q and directionality can be achieved simultaneously in a wide range of
the deformation parameter.
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I. INTRODUCTION

Optical processes in microcavities occur in important
plications such as the development of microdisk semic
ductor lasers@1,2# and optical fiber communications@3#, in
which total internal reflections of light are exploited
achieve nearly perfect mirror reflectivity. Dielectric cavitie
~cylinders or spheres! are a common type of optical micro
cavities. In such a situation, ideally the surface of the cav
confines certain modes of electromagnetic field, such as
‘‘whispering gallery’’ ~WG! modes@4–8# in which light cir-
culates almost tangent to the surface of the cavity via t
internal reflections, suffering minimal losses caused by e
nescent leakage and scattering due to surface roughne
there are no deformations in the cavity geometry from
ideal shape of cylinders or spheres, in a practical sense
can be trapped in the cavity indefinitely, making the cav
an ideal device for high-Q operation. This is the principle
based on which the world’s smallest lasers are fabrica
@5,7,8#.

While a circular symmetry permits WG modes with hig
Q values, it prevents the laser emission from having a g
directionality. Asymmetric resonant cavities~ARCs! with
smooth deformations from the circular symmetry are th
suggested@9–13#. Such deformations can be quite larg
ranging from 1–50% with respect to the corresponding
cular geometry. Although the WG modes of a spherical
cylindrical cavity can be treated analytically and the effect
small deformations can be analyzed using the traditio
wave-perturbation theory, it is difficult to study cavities wi
large deformations as the modes of highly deformed cavi
are not perturbatively related to these of the circular cavit
A question is then whether high-Q modes exist in highly
deformed cavities. The pioneering works in Refs.@9–13#
have shown that, for dielectric materials with a low index
refraction (n,2, such as glass fibers or cylindrical dye je
assuming that the surrounding medium hasn051), if the
cavity surface remains convex, high-Q WG modes can still
exist. This important result is obtained, surprisingly,
studying chaotic dynamics resulting from classical ray tr
ing. Specifically, by treating waves propagating in ARCs
light rays bouncing within the cavity, the problem of ARC
1063-651X/2002/65~4!/046204~5!/$20.00 65 0462
-
-

y
he

al
a-
. If
e
ht

d

d

n
,
-
r
f
al

s
s.

f
,

-
s

becomes that of classical billiards, a paradigm for study
Hamiltonian chaotic dynamics. It is demonstrated that theQ
value and the directionality of such a cavity can be compu
directly from properties of chaotic ray dynamics, such as
particle-decay law in the phase space, which are found to
in good agreement with experimental measurements@9–13#.
More recently, it is demonstrated both experimentally a
computationally that for high-index semiconductor materi
~index of refractionn.2), the WG modes may not be re
evant to the lasing properties of the cavities@13#. Instead,
resonant modes of ‘‘bow-tie’’ shapes are found to be resp
sible for the improved performance of the lasers in the pr
ence of large geometric deformations.

The scope of this paper is restricted to low-index diele
tric lasing cavities. Our focus is thus on the dynamics of
WG modes. We ask the following question: in order
achieve high-Q values of the lasing operation while main
taining a high degree of directionality, what is the maxima
allowed amount of deformation from a circular symmetr
The answer to this question is relevant to the practical des
of microdisk semiconductor lasers, where it is desirable
know the upper bound of the allowed deformation. To a
dress this question, we choose the well-studied exampl
the class of two-dimensional~cylindrical! resonators with
quadrupolar deformations from the circular boundary, a
investigate the ray dynamics in the resonator from the sta
point of chaotic scattering@14# by focusing on the decay
property of trajectories in the phase space. In general,
phase space contains both regular Kol’mogorov-Arnol
Moser~KAM ! tori ~surfaces! and chaotic regions, so chaot
scattering is nonhyperbolic@15–18#. The WG modes corre-
spond then to chaotic-scattering trajectories in the ph
space. For a given amount of deformation, the average
time of these trajectories in the scattering region, which c
respond to light rays trapped in the cavity, determines thQ
value of the cavity. Since in nonhyperbolic chaotic scatt
ing, trajectories escape according to the law of algebraic
cay, the average lifetime is determined by the exponen
the algebraic decay. By numerically computing the dec
exponent as a function of the deformation parameter, we
establish the upper bound for the allowed deformation
any given index of refraction. To quantify the directionali
©2002 The American Physical Society04-1
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of the light emission, we introduce a measure based on
probability distribution of the exiting angles of typical sca
tering trajectories. Our main result is that for typical low
index cavities, say withn;1.5, deformation as large as 25
can be allowed for high-Q lasing operation with a high de
gree of directionality. We stress that, since we focus on
WG modes corresponding to scattering trajectories exte
to major KAM tori, our result is applicable only to low-inde
resonant cavities.

In Sec. II, we explain our qualitative criterion for high-Q
operation based on the algebraic decay law. In Sec. III,
study the dynamics of cavities with quadrupolar deform
tions and introduce a measure to quantify the directiona
of the light emission. Concluding remarks are presented
Sec. IV.

II. DYNAMICAL CRITERION FOR HIGH- Q OPERATION

The quality factor, or theQ value, of a resonant cavity i
given byQ5vt, wherev is the frequency of the resonan
mode andt is its lifetime in the cavity@9–13,19#. In the
classical ray picture,t is the average lifetime of phase-spa
trajectories in the scattering region, which correspond to
WG modes. In nonhyperbolic chaotic scattering, due to
‘‘stickiness’’ effect of the KAM surfaces, the decay of traje
tories is algebraic@20–25#. In particular, suppose a larg
numberN(0) of initial conditions, corresponding to variou
rays in the WG modes, is distributed in a phase-space re
that does not contain any KAM tori, and letN(t) be the
number of trajectories still remaining in the cavity at timet.
The survival probabilityP(t) of trajectories in the cavity is
approximately given by the ratioN(t)/N(0). Because of
chaos, initiallyP(t) decays exponentially in time. But be
cause of KAM surfaces,P(t) decays algebraically after th
initial exponential decay

P~ t !;t2b, for t.t0 , ~1!

wheret0 ~large! is the onset time of the algebraic decay a
b.0 is the algebraic decay exponent.

The stickiness effect and the resulting algebraic decay
havior @Eq. ~1!# can be qualitatively understood, as follow
Consider the general case where chaotic regions and K
surfaces coexist. The stickiness effect is that, if a particl
initialized in a chaotic region near some KAM surface, th
the particle wanders close to that surface for a long tim
Take, then, two nearby points on a given KAM surface a
observe their evolution. What one typically finds is that t
distance between the two points hardly changes with ti
because the Lyapunov exponents in the directions along
KAM surface are zero~i.e., the motion is quasiperiodic!. The
symplectic nature of Hamiltonian dynamics implies that t
Lyapunov spectrum is organized in pairs of exponents w
equal value but opposite signs. Hence, an orbit on a KA
surface has zero Lyapunov exponents in directions b
along and perpendicular to the surface. Due to ergodicit
particle initialized in the chaotic region will come arbitrari
close to some KAM surface. When this occurs, the effect
Lyapunov exponents will be small, leading to slow dive
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gence of the particle trajectory from the KAM surfac
thereby causing the stickiness effect.

The main consequence of the stickiness effect on the
ticle transport is that the particle-decay law becomes a
braic @20–25#, in contrast to the exponential law observed
hyperbolic chaotic scattering or transient chaos in dissipa
systems. The algebraic-decay law appears to hold not o
for two-degrees-of-freedom Hamiltonian systems, but a
for higher-dimensional systems such as those described
four- and six-dimensional symplectic maps@26#. Theoretical
models @22,24,25# have also been proposed to explain t
numerically observed algebraic-decay law. A fundamen
assumption of these models is that a particle in the ph
space executes a random walk between families of s
similar chains of KAM islands. Besides yielding the alg
braic scaling law, these models also predict the values of
algebraic-decay exponent based on the number of s
similar families of islands included in the calculation.
light of these numerical and theoretical evidences, the a
braic decay law Eq.~1!, as opposed to the more rapid exp
nential decay exhibited by hyperbolic systems, is though
be characteristic of typical Hamiltonian systems.

Based on the algebraic-decay law@Eq. ~1!#, in the ray-
dynamics picture of optical microcavities, the interplay b
tween the amount of deformation and the algebraic-de
exponent can be seen, as follows. For a given value of
refraction indexn and a circular symmetry, the operation in
WG mode stipulates that the anglea of incidence~see Fig.
1! satisfies: sina,sinac , whereac is the critical angle. For
cavities with small deformations, the range of the anglea is
small as the corresponding light ray circulates near in
boundary in the WG mode and, hence, it is more likely
the condition sina,sinac to be satisfied, leading to a hig
probability of light rays being trapped inside the cavity. W
thus expectb to be small in such cases. Large deformatio
from the circular symmetry give rise to a large range of t
anglea and, consequently, it is relatively easy for the co
dition of total internal reflection to be violated, leading
large values ofb. Let e be the parameter that characteriz
the amount of deformation. We thus expect the algebr
decay exponentb to be a nondecreasing function ofe. To

FIG. 1. Variables for constructing a Poincare´ section for tracing
the ray dynamics in a two-dimensional cavity.
4-2
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derive a criterion to determine the maximally allowe
amount of deformation, we note that, heuristically, the av
age lifetimet of scattering trajectories is given by

t;t01E
t0

`

tP~ t !dt

5t01t22b/~22b!u t0
` ;H C, if b.2

`, if b,2,
~2!

wheret0 is the time of the onset of the algebraic decay andC
is a constant. We see that ifb,2, then the average lifetime
diverges asymptotically, indicating that in any practica
long time scales, a high value ofQ can be expected. If, in the
corresponding range of the amount of deformation, a h
directionality can be maintained~to be addressed below i
numerical experiments!, then a practical criterion for deter
mining the upper bound ofe can be conveniently set ase
,ec , whereb(ec)52.

III. NUMERICAL EXAMPLE

We consider the following class of two-dimensional ca
ties, written in the polar coordinate (r ,u), with quadrupolar
deformation characterized bye

r ~u!5
11e cos 2u

A11e2/2
. ~3!

Classical ray tracing can be done conveniently by using
Poincare´ map defined with respect to the angles@27# c, a,
and u, as shown in Fig. 1. The map can be written in t
following implicit form, relating the dynamical variable
(u,a) at successive total internal reflections off the bound
of the cavity:

tan~c t1a t!

5
~11e cos 2u t11!sinu t112~11e cos 2u t!sinu t

~11e cos 2u t11!cosu t112~11e cos 2u t!cosu t
,

tanc t11

5
2e sinu t11 sin 2u t112cosu t11~11e cos 2u t11!

sinu t11~11e cos 2u t11!12e cosu t11sin 2u t11
,

a t115c t112c t2a t , ~4!

where t is the discrete-time index denoting the event
bounce of light ray off the cavity boundary. In our numeric
experiments, we fix the critical angle of incidence to
sinac50.735 ~arbitrarily!, corresponding to low-index cavi
ties with refraction indexn'1.475. Total internal reflection
breaks down whena exceedsac , which is regarded as th
escape of the corresponding light ray or scattering traject
Figure 2~a! shows, fore50.1, the phase-space structure
the map in Eq.~4!, where 1000 initial conditions chose
uniformly from a0P@0.05,p/4# are utilized, and the horizon
tal dashed line indicates the critical angle of incidence.
see that the phase space contains both KAM tori and cha
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regions. While the map in Eq.~4! describes the dynamics o
particles in a closed billard, imposing the threshold line atac
makes the system effectively open. Figure 2~b! shows, in the
two-dimensional physical space (x,y), a typical scattering
trajectory in a WG mode and its escape from the cavity a
about 1000 bounces. Figure 2~c! shows the dwelling timeT
of light rays in the cavity as a function of the initial angle
incidencea0, where if the trajectory lives on a KAM torus
the time is infinite~represented byT5104), and if the ray is
in a chaotic region connected toac , it will eventually escape
but the time it stays in the cavity can be long. Since W
modes typically correspond to trajectories in the open c
otic region above the binding KAM tori, theQ-value of the
cavity in the WG modes is determined by motions of rays
the chaotic region. The plot in Fig. 2~c! in fact represents a
scattering function@15–18#. The emission of light rays in the
WG modes apparently has a high degree of directionality
shown in Fig. 2~d!, a histogram of the emission angleuout ,
whereuout is defined to be the angle of the refracted, exiti
light ray with respect to thex axis. We see that the probabi
ity distribution of outgoing angles of scattering trajectori
appears to be highly localized.

In the presence of deformation, the probability for a typ
cal light ray to sustain total internal reflection or, equiv
lently, that for a trajctory to survive in the scattering regio
decays algebraically with time, as shown in Figs. 3~a!–3~c!,
where the survival probabilityP(t) is plotted versus time on
a logarithmic scale fore50.1, 0.2, and 0.3, respectively. T
obtain these plots, we useN(0)5104 initial conditions dis-
tributed uniformly in the open chaotic region in Fig. 2~a!,
computeN(t), the number of trajectories that are still in th
cavity at timet, and approximateP(t)'N(t)/N(0). The ap-
proximate, yet robust linear behaviors in Figs. 3~a!–3~c! in-
dicate the expected behavior of the algebraic decay, and
value of the decay exponentb apparently increases as th
deformation becomes more severe. Figure 4~a! shows how
the algebraic exponent increases as the deformation pa
etere is increased. We observe a smooth, monotonically
creasing behavior. In particular, fore,ec'0.21, the expo-
nent remains below the critical valuebc52, indicating that
for 0,e,ec , the average lifetime of light rays in the cavit
diverges and theQ value of the cavity is high in a statistica
sense. In contrary, fore.ec , the algebraic-decay exponen
is above two, implying relatively lowQ values. Thus, for the
particular low-index (n'1.5) cavity with a quadrupolar de
formation in our numerical study, in order to achieve a hig
Q operation, the amount of deformation should not exce
the value of about 0.2.

While high-Q operation of the cavity is desired, a
equally important measure is the directionality of the lig
emission. To quantify this, we consider the worst case wh
light is emitted equally probably in all directions. The pro
ability distribution is thus:P(uout)51/2p for 0<uout<2p.
For the computed distribution as in Fig. 2~d!, we normalize
the height of the distribution to 1/2p and compute the tota
area under the distribution curves

A~e!5E
0

2p

P~uout!duout ,
4-3
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where a unit area indicates uniform emission. The follow
measure of directionality can then be defined:

m~e!512A~e!, ~5!

where high values ofm signify high degrees of directionality
~for uniform emission,m50). Figure 4~b! shows, for the
particular cavity in Eq.~3!, m versuse. Apparently, in the
range of high-Q operation (e,ec), m'1, indicating a high
degree of directionality. We also find that, in the range of
deformation parameter where light emissions possess a

FIG. 2. For a dielectric cavity of refractive indexn51.475 and
a quadrupolar deformation ofe50.1: ~a! the phase-space structur
~b! behavior of light ray~in a WG mode! and its escape from the
cavity, ~c! staying time of light rays versus the initial angle of inc
dence, and~d! histogram of the emission angleuout . The highly
localized pattern in the histogram indicates a high degree of di
tionality of the emitting light.

FIG. 3. For a dielectric cavity of refractive indexn'1.475 and
a quadrupolar deformation, algebraic decay of the probability
light rays to be trapped in the cavity for~a! e50.1, ~b! e50.2, and
~c! e50.3.
04620
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degree of directionality, the rays appear to exit the cavity
only a few locations on the boundary. At each exiting poi
the range of the emission angleuout is highly localized. This
behavior is shown in Fig. 4~c!, where the angleu that defines
the position of boundary point~position angle! versus the
emission angleuout is plotted for the escaping light rays. I
contrast, when the deformation is near zero, light rays
exit from almost everywhere on the boundary (0<u,2p),
which means that, for the WG-mode operation, light can
emitted in almost every possible direction: 0<uout,2p, as
shown in Fig. 4~d!. Thus, fore*0, there exists apparently n
particular direction for the light emission, as expected.

IV. CONCLUSION

In summary, we have investigated the ray dynamics
optical microlasing cavities with quadrupolar deformati
from the perspective of chaotic scattering. A physical arg
ment, based on examining the survival probability of scat
ing trajectories in the cavity, is provided to assess theQ
value of the cavity. We also introduce a measure to quan
the directionality of the light emission. These ideas are
plicable to deformed optical cavities in general, although
use quadrupolar deformations in numerical computatio
Our result that high-Q operation and high degrees of dire
tionality can be achieved simultaneously in deformed ca
ties can be potentially useful for practical design and fab
cation of these cavities, which are key to the developmen
microlasers.

We remark that in actual operation of a microlaser, t
issue of dissipation may be important. Evanescent leak
and surface roughness are possible contributing factors to
dissipation. The influence of weak dissipation on chao

c-

r

FIG. 4. For cavity of refractive indexn51.475 and a quadru-
polar deformation:~a! The algebraic-decay exponentb versus the
deformation parametere. high-Q lasing operation can be expecte
for e,ec'0.21.~b! The measurem of directionality versuse. Ap-
parently, a high degree of directionality can be maintained in
range of high-Q operation.~c,d! Position angleu versus the emis-
sion angleuout for e50.1 and 0.001, respectively.
4-4
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scattering, particularly on nonhyperbolic scattering, can
substantial. For instance, the decay law for scattering tra
tories can change metamorphically from being algebraic
being exponential in the presence of an arbitrarily sm
amount of dissipation@28#. Rigorously speaking, the alge
braic decay law is not observable in optical cavities w
dissipation. Nonetheless the algebraic law is useful for e
y

c
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mating theQ value of the cavity, which is important for th
design of microlasers.
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