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Chaotic scattering in deformed optical microlasing cavities

Zonghua Lid and Ying-Cheng Ldi?
!Department of Mathematics, Center for Systems Science and Engineering Research, Arizona State University, Tempe, Arizona 85287
’Department of Electrical Engineering and Physics, Arizona State University, Tempe, Arizona 85287
(Received 20 September 2001; published 26 March 2002

We consider a common class of dielectric optical microlasing cavities with quadrupolar deformations and
address the question of the maximally allowed amount of deformation for bothCnigperation and a high
degree of directionality of light emission. Our approach is to compute the probability for light rays to be
trapped in the cavity by examining chaotic scattering dynamics in the classical phase space. We develop a
dynamical criterion for highQ operation and introduce a measure to quantify the directionality of the light
emission. Our results suggest that highand directionality can be achieved simultaneously in a wide range of
the deformation parameter.
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[. INTRODUCTION becomes that of classical billiards, a paradigm for studying
Hamiltonian chaotic dynamics. It is demonstrated that@he
Optical processes in microcavities occur in important apvalue and the directionality of such a cavity can be computed
plications such as the development of microdisk semicondirectly from properties of chaotic ray dynamics, such as the
ductor laserg1,2] and optical fiber communicatiori8], in  particle-decay law in the phase space, which are found to be
which total internal reflections of light are exploited to in good agreement with experimental measuremgdd 3.
achieve nearly perfect mirror reflectivity. Dielectric cavities More recently, it is demonstrated both experimentally and
(cylinders or spherg¢sare a common type of optical micro- computationally that for high-index semiconductor materials
cavities. In such a situation, ideally the surface of the cavity(index of refractionn>2), the WG modes may not be rel-
confines certain modes of electromagnetic field, such as thevant to the lasing properties of the cavit{gs). Instead,
“whispering gallery” (WG) modes[4—8] in which light cir-  resonant modes of “bow-tie” shapes are found to be respon-
culates almost tangent to the surface of the cavity via totasible for the improved performance of the lasers in the pres-
internal reflections, suffering minimal losses caused by evaence of large geometric deformations.
nescent leakage and scattering due to surface roughness. If The scope of this paper is restricted to low-index dielec-
there are no deformations in the cavity geometry from theric lasing cavities. Our focus is thus on the dynamics of the
ideal shape of cylinders or spheres, in a practical sense ligt##G modes. We ask the following question: in order to
can be trapped in the cavity indefinitely, making the cavityachieve high® values of the lasing operation while main-
an ideal device for higl®y operation. This is the principle taining a high degree of directionality, what is the maximally
based on which the world’s smallest lasers are fabricatedllowed amount of deformation from a circular symmetry?
[5,7,8. The answer to this question is relevant to the practical design
While a circular symmetry permits WG modes with high- of microdisk semiconductor lasers, where it is desirable to
Q values, it prevents the laser emission from having a goo#tnow the upper bound of the allowed deformation. To ad-
directionality. Asymmetric resonant cavitigfARCs) with  dress this question, we choose the well-studied example of
smooth deformations from the circular symmetry are therthe class of two-dimensiondkylindrical) resonators with
suggested9-13. Such deformations can be quite large, quadrupolar deformations from the circular boundary, and
ranging from 1-50% with respect to the corresponding cirinvestigate the ray dynamics in the resonator from the stand-
cular geometry. Although the WG modes of a spherical ompoint of chaotic scattering14] by focusing on the decay
cylindrical cavity can be treated analytically and the effect ofproperty of trajectories in the phase space. In general, the
small deformations can be analyzed using the traditionaphase space contains both regular Kol’'mogorov-Arnol’d-
wave-perturbation theory, it is difficult to study cavities with Moser(KAM ) tori (surfaces and chaotic regions, so chaotic
large deformations as the modes of highly deformed cavitiescattering is nonhyperbolid5-18. The WG modes corre-
are not perturbatively related to these of the circular cavitiesspond then to chaotic-scattering trajectories in the phase
A question is then whether higQ- modes exist in highly space. For a given amount of deformation, the average life-
deformed cavities. The pioneering works in Reff8-13  time of these trajectories in the scattering region, which cor-
have shown that, for dielectric materials with a low index ofrespond to light rays trapped in the cavity, determinesQhe
refraction <2, such as glass fibers or cylindrical dye jets,value of the cavity. Since in nonhyperbolic chaotic scatter-
assuming that the surrounding medium hms=1), if the  ing, trajectories escape according to the law of algebraic de-
cavity surface remains convex, high'WG modes can still cay, the average lifetime is determined by the exponent of
exist. This important result is obtained, surprisingly, bythe algebraic decay. By numerically computing the decay
studying chaotic dynamics resulting from classical ray trac-exponent as a function of the deformation parameter, we can
ing. Specifically, by treating waves propagating in ARCs asestablish the upper bound for the allowed deformation for
light rays bouncing within the cavity, the problem of ARCs any given index of refraction. To quantify the directionality
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of the light emission, we introduce a measure based on the y
probability distribution of the exiting angles of typical scat-
tering trajectories. Our main result is that for typical low-
index cavities, say witm~ 1.5, deformation as large as 25%
can be allowed for higly lasing operation with a high de-
gree of directionality. We stress that, since we focus on the
WG modes corresponding to scattering trajectories exteriol
to major KAM tori, our result is applicable only to low-index
resonant cavities.

In Sec. Il, we explain our qualitative criterion for high-
operation based on the algebraic decay law. In Sec. Ill, we
study the dynamics of cavities with quadrupolar deforma-
tions and introduce a measure to quantify the directionality

of the light emission. Concluding remarks are presented in ]
Sec. IV. FIG. 1. Variables for constructing a Poincaection for tracing

the ray dynamics in a two-dimensional cavity.

an

IIl. DYNAMICAL CRITERION FOR HIGH- Q OPERATION . )
gence of the particle trajectory from the KAM surface,

The quality factor, or th&) value, of a resonant cavity is thereby causing the stickiness effect.
given by Q= w7, wherew is the frequency of the resonant  The main consequence of the stickiness effect on the par-
mode andr is its lifetime in the cavity[9-13,19. In the  icje transport is that the particle-decay law becomes alge-
classical ray picturer is the average lifetime of phase-space p5ic 2025, in contrast to the exponential law observed in
;c/r\z/';\éectorées ml the scr:]atterlggllreg;]on,t_vvh|ch ttCO(resp(;)nd tto ;‘E‘Flyperbolic chaotic scattering or transient chaos in dissipative
. mo ef' N NONNyperbolic chaotic scattéring, due 1o E'Systems. The algebraic-decay law appears to hold not only
stickiness” effect of the KAM surfaces, the decay of trajec- for two-degrees-of-freedom Hamiltonian systems, but also

tories is algebraid20—-25. In particular, suppose a large . . . .

numberN(0) of initial conditions, corresponding to various Ior h|ghgr-<:,i|rr(1;_en5|on_al S)(Stemsl Sl:.Ch as th]os_;lfahdesct_rled by
rays in the WG modes, is distributed in a phase-space regio ug ‘]’m 2;")2('4 |2merr11$|ona| syngp ectic mamﬁd. : eore; ica h
that does not contain any KAM tori, and I&i(t) be the models[22,24,23 have also been proposed to explain the

number of trajectories still remaining in the cavity at time numerically observed algebraic-decay law. A fundamental
The survival probabilityP(t) of trajectories in the cavity is 2Ssumption of these models is that a particle in the phase

approximately given by the ratidl(t)/N(0). Because of SPace executes a random walk between families of self-
chaos, initially P(t) decays exponentially in time. But be- Similar chains of KAM islands. Besides yielding the alge-

cause of KAM surfacesP(t) decays algebraically after the Praic scaling law, these models also predict the values of the

initial exponential decay algebraic-decay exponent based on the number of self-
similar families of islands included in the calculation. In
P(t)~t~#, for t>t,, (1) light of these numerical and theoretical evidences, the alge-

braic decay law Eq(l), as opposed to the more rapid expo-

wheret, (large is the onset time of the algebraic decay andnential decay exhibited by hyperbolic systems, is thought to
B>0 is the algebraic decay exponent. be characteristic of typical Hamiltonian systems.

The stickiness effect and the resulting algebraic decay be- Based on the algebraic-decay I4#q. (1)], in the ray-
havior[Eq. (1)] can be qualitatively understood, as follows. dynamics picture of optical microcavities, the interplay be-
Consider the general case where chaotic regions and KANween the amount of deformation and the algebraic-decay
surfaces coexist. The stickiness effect is that, if a particle ig€xponent can be seen, as follows. For a given value of the
initialized in a chaotic region near some KAM surface, thenrefraction indexh and a circular symmetry, the operation in a
the particle wanders close to that surface for a long timeWG mode stipulates that the angleof incidence(see Fig.
Take, then, two nearby points on a given KAM surface andl) satisfies: sime<<sina,, wherea, is the critical angle. For
observe their evolution. What one typically finds is that thecavities with small deformations, the range of the anglis
distance between the two points hardly changes with timesmall as the corresponding light ray circulates near in the
because the Lyapunov exponents in the directions along thegoundary in the WG mode and, hence, it is more likely for
KAM surface are zerdi.e., the motion is quasiperiodicThe  the condition sirk<<sina, to be satisfied, leading to a high
symplectic nature of Hamiltonian dynamics implies that theprobability of light rays being trapped inside the cavity. We
Lyapunov spectrum is organized in pairs of exponents witlthus expeciB to be small in such cases. Large deformations
equal value but opposite signs. Hence, an orbit on a KAMrom the circular symmetry give rise to a large range of the
surface has zero Lyapunov exponents in directions botlanglea and, consequently, it is relatively easy for the con-
along and perpendicular to the surface. Due to ergodicity, dition of total internal reflection to be violated, leading to
particle initialized in the chaotic region will come arbitrarily large values of8. Let € be the parameter that characterizes
close to some KAM surface. When this occurs, the effectivehe amount of deformation. We thus expect the algebraic
Lyapunov exponents will be small, leading to slow diver-decay exponeng to be a nondecreasing function ef To
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derive a criterion to determine the maximally allowed regions. While the map in E¢4) describes the dynamics of
amount of deformation, we note that, heuristically, the averparticles in a closed billard, imposing the threshold line.at

age lifetimer of scattering trajectories is given by makes the system effectively open. Figutb)zhows, in the
two-dimensional physical space,{), a typical scattering
T~tot Jth(t)dt trajectory in a WG mode and its escape from the cavity after
to about 1000 bounces. Figuréc? shows the dwelling timg
) of light rays in the cavity as a function of the initial angle of
—to 12 BI(2— B)|7 ~ C, if p>2 @) incidencecwg, where if the trajectory lives on a KAM torus,
0 |, if B<2, the time is infinite(represented by =10%, and if the ray is

in a chaotic region connected &g , it will eventually escape
wheret, is the time of the onset of the algebraic decay @d but the time it stays in the cavity can be long. Since WG
is a constant. We see thatff<2, then the average lifetime modes typically correspond to trajectories in the open cha-
diverges asymptotically, indicating that in any practically otic region above the binding KAM tori, th@-value of the
long time scales, a high value Qfcan be expected. If, inthe cavity in the WG modes is determined by motions of rays in
corresponding range of the amount of deformation, a highhe chaotic region. The plot in Fig(® in fact represents a
directionality can be maintainedo be addressed below in scattering functiofil5—18. The emission of light rays in the
numerical experimentsthen a practical criterion for deter- WG modes apparently has a high degree of directionality, as
mining the upper bound of can be conveniently set as  shown in Fig. 2d), a histogram of the emission anglg,;,

<e€., WhereB(e.)=2. whered,, is defined to be the angle of the refracted, exiting
light ray with respect to th& axis. We see that the probabil-
. NUMERICAL EXAMPLE ity distribution of outgoing angles of scattering trajectories

appears to be highly localized.

In the presence of deformation, the probability for a typi-
cal light ray to sustain total internal reflection or, equiva-
lently, that for a trajctory to survive in the scattering region,
decays algebraically with time, as shown in Fig&)33(c),

— 1+ecos 3) where the survival probabilit?(t) is plotted versus time on

N a logarithmic scale foe=0.1, 0.2, and 0.3, respectively. To

obtain these plots, we ud¢(0)= 10" initial conditions dis-

ClaSSiC,al ray traCing can be done Conveniently by USing thgqbuted uniform|y in the open chaotic region in F|g(a£
Poincaremap defined with respect to the ang[@3] , @,  computeN(t), the number of trajectories that are still in the
and 0, as shown in Flg 1. The map can be written in thecavity at timet, and approx|mat@(t)~N(t)/N(O) The ap-
fO||0Wing ImpIICIt form, relating the dynamical variables proximate' yet robust linear behaviors in F|g$a)3_3(c) in-
(0,a) at SL_Jccessive total internal reflections off the boundaryicate the expected behavior of the algebraic decay, and the
of the cavity: value of the decay exponept apparently increases as the
tan( g+ ay) deformation_ becomes more severe. Figuta 4;how§ how

t et the algebraic exponent increases as the deformation param-

(1+ €cos 20, 1)Sin 6,41 — (1+ € COS 26,)sin 6, etere is increased. We observe a smooth, monotonically in-
= creasing behavior. In particular, fer<e.~0.21, the expo-
nent remains below the critical valyg.=2, indicating that

We consider the following class of two-dimensional cavi-
ties, written in the polar coordinate ,(¢), with quadrupolar
deformation characterized by

r(e)

~ (1+€cos 2, ,)cosb;,— (1+ € cos 20,)cosb,’

tany; . 1 for 0<e<e., the average lifetime of light rays in the cavity
v diverges and th€ value of the cavity is high in a statistical
_ 2€sin6;,.1SiN20;,1—C0SO; 4 1(1+ €COS 20, 1) sense. In contrary, foe> e, the algebraic-decay exponent
T SiN6,.1(1+€eCOS 2, )+ 2€COSO, 1SN 20,1’ is above two, implying relatively lowQ values. Thus, for the
particular low-index (=~ 1.5) cavity with a quadrupolar de-
Qs 1= Pa1— h—ay, (4)  formation in our numerical study, in order to achieve a high-

Q operation, the amount of deformation should not exceed
wheret is the discrete-time index denoting the event ofthe value of about 0.2.
bounce of light ray off the cavity boundary. In our numerical ~ While high-Q operation of the cavity is desired, an
experiments, we fix the critical angle of incidence to beequally important measure is the directionality of the light
sina.=0.735 (arbitrarily), corresponding to low-index cavi- emission. To quantify this, we consider the worst case where
ties with refraction indexn~1.475. Total internal reflection light is emitted equally probably in all directions. The prob-
breaks down whem exceedsx., which is regarded as the ability distribution is thusP(6,,) = 1/27 for 0< 6,,,<27.
escape of the corresponding light ray or scattering trajectorycor the computed distribution as in Fig(d®? we normalize
Figure 2a) shows, fore=0.1, the phase-space structure ofthe height of the distribution to 1/2 and compute the total
the map in Eq.(4), where 1000 initial conditions chosen area under the distribution curves
uniformly from aqe[0.05;7/4] are utilized, and the horizon- )
tal dashed line indicates the critical angle of incidence. We A(E):J WP(G )do
see that the phase space contains both KAM tori and chaotic ot Tout
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polar deformationi{a) The algebraic-decay expone@tversus the
FIG. 2. For a dielectric cavity of refractive index=1.475 and  geformation parameter. high-Q lasing operation can be expected
a quadrupolar deformation ef=0.1: (a) the phase-space structure, for ¢< €.~0.21.(b) The measurg: of directionality versus. Ap-
(b) behavior of light ray(in a WG modg and its escape from the parently, a high degree of directionality can be maintained in the
cavity, () staying time of light rays versus the initial angle of inci- range of high© operation.(c,d) Position angle§ versus the emis-
dence, andd) histogram of the emission ang#.. The highly  sjon angleg,,, for e=0.1 and 0.001, respectively.
localized pattern in the histogram indicates a high degree of direc-

tionality of the emitting light.

where a unit area indicates uniform emission. The followingdegree of direct_ionality, the rays appear to exit thg cavity at
measure of directionality can then be defined: only a few Iocatlons_ on the bound_ary: At each ?ang p_omt,
the range of the emission anglg,; is highly localized. This
w(ie)=1—A(e), (5) behavior is shown in Fig.(4), where the angl® that defines
the position of boundary pointposition anglg versus the
where high values of. signify high degrees of directionality emission angle,; is plotted for the escaping light rays. In
(for uniform emission,u=0). Figure 4b) shows, for the contrast, when the deformation is near zero, light rays can
particular cavity in Eq(3), u versuse. Apparently, in the exit from almost everywhere on the boundary08<2m),
range of highQ operation €<e.), u~1, indicating a high which means that, for the WG-mode operation, light can be
degree of directionality. We also find that, in the range of theemitted in almost every possible direction=@,,<2, as
deformation parameter where light emissions possess a highown in Fig. 4d). Thus, fore=0, there exists apparently no
particular direction for the light emission, as expected.

0

| (a) e=0.1

IV. CONCLUSION

In summary, we have investigated the ray dynamics in
optical microlasing cavities with quadrupolar deformation
from the perspective of chaotic scattering. A physical argu-
ment, based on examining the survival probability of scatter-
ing trajectories in the cavity, is provided to assess §e
value of the cavity. We also introduce a measure to quantify
the directionality of the light emission. These ideas are ap-
plicable to deformed optical cavities in general, although we
use quadrupolar deformations in numerical computations.
Our result that high® operation and high degrees of direc-
tionality can be achieved simultaneously in deformed cavi-
ties can be potentially useful for practical design and fabri-

Iog10 P(t)

0 2 3 4 : o .
|Og10 t cation of these cavities, which are key to the development of
microlasers.
FIG. 3. For a dielectric cavity of refractive indewx~1.475 and We remark that in actual operation of a microlaser, the

a quadrupolar deformation, algebraic decay of the probability foissue of dissipation may be important. Evanescent leakage
light rays to be trapped in the cavity f¢a) e=0.1, (b) e=0.2, and  and surface roughness are possible contributing factors to the
(c) e=0.3. dissipation. The influence of weak dissipation on chaotic
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scattering, particularly on nonhyperbolic scattering, can bemating theQ value of the cavity, which is important for the
substantial. For instance, the decay law for scattering trajedesign of microlasers.

tories can change metamorphically from being algebraic to

being exponential in the presence of an arbitrarily small ACKNOWLEDGMENT
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